3 research outputs found

    A Review on the Applications of Crowdsourcing in Human Pathology

    Full text link
    The advent of the digital pathology has introduced new avenues of diagnostic medicine. Among them, crowdsourcing has attracted researchers' attention in the recent years, allowing them to engage thousands of untrained individuals in research and diagnosis. While there exist several articles in this regard, prior works have not collectively documented them. We, therefore, aim to review the applications of crowdsourcing in human pathology in a semi-systematic manner. We firstly, introduce a novel method to do a systematic search of the literature. Utilizing this method, we, then, collect hundreds of articles and screen them against a pre-defined set of criteria. Furthermore, we crowdsource part of the screening process, to examine another potential application of crowdsourcing. Finally, we review the selected articles and characterize the prior uses of crowdsourcing in pathology

    Defective INPP5E distribution in NPHP1‐related Senior–Loken syndrome

    Get PDF
    Background: Senior-Loken syndrome is a rare genetic disorder that presents with nephronophthisis and retinal degeneration, leading to end-stage renal disease and progressive blindness. The most frequent cause of juvenile nephronophthisis is a mutation in the nephronophthisis type 1 (NPHP1) gene. NPHP1 encodes the protein nephrocystin-1, which functions at the transition zone (TZ) of primary cilia. Methods: We report a 9-year-old Senior-Loken syndrome boy with NPHP1 deletion, who presents with bilateral vision decrease and cystic renal disease. Renal function deteriorated to require bilateral nephrectomy and renal transplant. We performed immunohistochemistry, H&E staining, and electron microscopy on the renal sample to determine the subcellular distribution of ciliary proteins in the absence of NPHP1. Results: Immunohistochemistry and electron microscopy of the resected kidney showed disorganized cystic structures with loss of cilia in renal tubules. Phosphoinositides have been recently recognized as critical components of the ciliary membrane and immunostaining of kidney sections for phosphoinositide 5-phosphatase, INPP5E, showed loss of staining compared to healthy control. Ophthalmic examination showed decreased electroretinogram consistent with early retinal degeneration. Conclusion: The decreased expression of INPP5E specifically in the primary cilium, coupled with disorganized cilia morphology, suggests a novel role of NPHP1 that it is involved in regulating ciliary phosphoinositide composition in the ciliary membrane of renal tubular cells

    Mitochondrial Triglyceride Dysregulation in Optic Nerves Following Indirect Traumatic Optic Neuropathy

    No full text
    The purpose of this work is to identify mitochondrial optic nerve (ON) lipid alterations associated with sonication-induced traumatic optic neuropathy (TON). Briefly, a mouse model of indirect TON was generated using sound energy concentrated focally at the entrance of the optic canal using a laboratory sonifier (Branson Digital Sonifier 450, Danbury, CT, USA) with a microtip probe. We performed an analysis of a previously generated dataset from high-performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). We analyzed lipids from isolated mitochondria from the ON at 1 day, 7 days, and 14 days post-sonication compared to non-sonicated controls. Lipid abundance alterations in post-sonicated ON mitochondria were evaluated with 1-way ANOVA (FDR-adjusted significant p-value < 0.01), debiased sparse partial correlation (DSPC) network modeling, and partial least squares-discriminant analysis (PLS-DA). We find temporal alterations in triglyceride metabolism are observed in ON mitochondria of mice following sonication-induced optic neuropathy with notable depletions of TG(18:1/18:2/18:2), TG(18:1/18:1/18:1), and TG(16:0/16:0/18:1). Depletion of mitochondrial triglycerides may mediate ON damage in indirect traumatic optic neuropathy through loss energy substrates for neuronal metabolism
    corecore